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Abstract. Four models of linear relaxational filtration is considered. Initial
and boundary conditions are set for them (Dirichlet, Neumann and mixed).
Obtained problem solved by Monte Carlo methods – “random walk on spheres“,
“random walk on balls“ and “random walk on lattices“ of Monte Carlo meth-
ods and by probability difference methods.
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1. Introduction

The linear relaxational filtration is described by the conservation law of pulse of
resistance force, by the linearized conservation law of a fluid mass and determining
relations for pulse of resistance forces and fluid mass. After exception of a pulse
density of resistance forces (J) and (mρ) this system with respect to pressure (p)
and velocity of filtration (W) is

∆p(x, t) =
F (0)Φ(0)

ρ0

∂2p(x, t)

∂t2
+

∞∫
0

(
F (0)

ρ0

dΦ(t′)

dt′
+

Φ(0)

ρ0

dF (t′)

dt′
+

1

ρ0

t′∫
0

dF (τ)

dτ

dΦ(t′ − τ)

d(t′ − τ)
dτ

)
∂2p(x, t− t′)
∂(t− t′)2

dt′, (1.1)

−F (0)
∂W(x, t)

∂t
−
∞∫

0

dF (t′)

dt′
∂W(x, t− t′)
∂(t− t′)

dt′ = gradx p(x, t). (1.2)

Here F (t) and Φ(t) are relaxation kernels of the filtration law and fluid mass. [1].
We consider four models of relaxational filtration.
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I. A model of classical elastic filtration. This model of filtration relates to the
kernels of relaxation F (t) = µ

κ tη(t), Φ(t) = ρ0βη(t), and equations (1.1) and (1.2)
take form

χ∆p(x, t) =
∂p(x, t)

∂t
, (1.3)

W(x, t) = −κ
µ

gradx p(x, t). (1.4)

II. The simplest model of filtration with a constant speed of disturbance
spread. This model is defined with kernels of relaxation: F (t) = µ

κ (t + τ)η(t),
Φ(t) = ρ0βη(t). For the given model the system (1.1) – (1.2) has a form:

χ∆p(x, t) =
∂p(x, t)

∂t
+ τ

∂2p(x, t)

∂t2
, (1.5)

τ
∂W(x, t)

∂t
+ W(x, t) = −κ

µ
gradx p(x, t). (1.6)

III. Filtration model in relaxationaly-compressed porous environment real-
ized by the linear Darcy law. Corresponding kernels are F (t) = µ

κ tη(t), Φ(t) =

ρ0

(
β − λm−λp

λm
βc exp

(
− t

λm

))
η(t). System (1.1) – (1.2) has a form:

χ∆

(
p(x, t) + λm

∂p(x, t)

∂t

)
=

∂

∂t

(
p(x, t) + λ′m

∂p(x, t)

∂t

)
, (1.7)

W(x, t) = −κ
µ

gradx p(x, t). (1.8)

where λ′m = λm
β∗
β . In a particular case of incompressible fluid, βf = 0 and λp = 0,

instead of (1.7) – (1.8) we have

χ∆

(
p(x, t) + λm

∂p(x, t)

∂t

)
=
∂p(x, t)

∂t
, (1.9)

W(x, t) = −κ
µ

gradx p(x, t). (1.10)

Model (1.9) – (1.10) describes a filtration of incompressible fluid in relaxationaly-
compressed porous environment for λp = 0, and also in fractured-porous environ-
ment with infinitesimal elasticity of fractures and conductivity of blocks.

IV. Model of filtration by the simplest unbalanced law in elastic porous en-

vironment. Here the kernels of relaxation have form: F (t) = µ
κ

(
t−
(
tW − tp

)(
1−

exp
(
− t

τp

)))
η(t), Φ(t) = ρ0βη(t). For this model system (1.1) – (1.2) lead to

form:

χ∆

(
p(x, t) + τp

∂p(x, t)

∂t

)
=

∂

∂t

(
p(x, t) + τW

∂p(x, t)

∂t

)
, (1.11)
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τW
∂W(x, t)

∂t
+ W(x, t) = −κ

µ
gradx

(
p(x, t) + τW

∂p(x, t)

∂t

)
. (1.12)

We describe functions and parameters incoming in four filtration models. τ
is time of relaxation, κ is penetrability coefficients, m is a porosity, t is time, β
is elasticity capacity coefficient of the layer, β = βc +m0βf , βc is compressibility
coefficient of the porous environment, m0 is a fluid porosity in the unperturbed
layer conditions, βf is compressibility coefficient of the fluid, µ is a fluid viscosity,
ρ is a fluid density, χ = κ

µβ is piezoconductivity coefficient of the layer, η(t) is

Heaviside function, η(t) = 1 for t > 0, η(t) = 1/2 for t = 0, η(t) = 0 for t < 0, τW
and τp nonnegative constants relaxation times of filtration velocity and pressure,

λ′m = λβ∗β , β∗ = m0βf + βcλp/λm is dynamics coefficient of elasticity capacity,

λm is the relaxation time of porosity under the constant overfull of pressure, λp is
the relaxation time of pressure under the constant porosity, p0 is pressure in the
unperturbed layer conditions, ρ0 is density in the unperturbed layer conditions.
All parameters are nonnegative given numbers.[1].

Mathematical problems for models I – IV. Initial conditions for all four
models. First of all in all four models in bounded region of filtration Ω ∈ R3 with
boundary ∂Ω and for t ∈ [0, T ] and for pressure p(x, t) we consider equations (1.3),
(1.5), (1.7), (1.9) and (1.11). Then we set initial conditions for them. For equations
(1.3) and (1.9):

p(x, t) = a(x),while t = 0, (1.13)

and for equations (1.5), (1.7) and (1.11) besides condition (1.13) we give an addi-
tional condition

∂p(x, t)

∂t
= b(x),while t = 0. (1.14)

Boundary conditions for all four models.

Problem 1. (Dirichlet Problem). In bounded filtration region Ω ∈ R3 with boundary
∂Ω and for time t ∈ [0, T ], function p(x, t) satisfies the boundary condition

p(x, t) = p1(x, t) for x ∈ ∂Ω× [0, T ]. (1.15)

Problem 2. (Neumann Problem). In bounded filtration region Ω ∈ R3 with bound-
ary ∂Ω and for time t ∈ [0, T ], function p(x, t) satisfies the boundary condition

∂p(x, t)

∂n
= p2(x, t) for x ∈ ∂Ω× [0, T ], (1.16)

where n is an internal normal.

Problem 3. (Mixed Problem). In bounded filtration region Ω ∈ R3 with boundary
∂Ω and for time t ∈ [0, T ], function p(x, t) satisfies the boundary condition
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α1p(x, t) + β1
∂p(x, t)

∂n
= p3(x, t) for x ∈ ∂Ω× [0, T ], (1.17)

where n is an internal normal.

An idea for solving by Monte Carlo methods.
Initial-boundary problem with respect to pressure p(x, t) is discretizied only

by variable t. For that, interval [0, T ] split intoN equal steps of ∆τ = T
N , tn = n∆τ ,

n = 1, 2, . . . , N . As a result we get discrete boundary problem by time variable.
Obtained, the problems for elliptic type PDEs (Helmholtz equation) solved by
Monte Carlo methods.

2. Solution of the initial boundary value problems by Monte Carlo
methods

We demonstrate a solution of the initial boundary value problems by Monte Carlo
methods on the following model – Filtration in relaxationaly-compressed porous
environment realized by the linear Darcy law, that is model III. For this model we
have a mathematical problem:

χ∆

(
p(x, t) + λm

∂p(x, t)

∂t

)
=

∂

∂t

(
p(x, t) + λ′m

∂p(x, t)

∂t

)
, (2.1)

p(x, t) = a(x),while t = 0, (2.2)

∂p(x, t)

∂t
= b(x),while t = 0, (2.3)

p(x, t) = p1(x, t) for x ∈ ∂Ω× [0, T ]. (2.4)

2.1. Solution of the Dirichlet Problem (2.1) – (2.4)

Let coefficients χ, λm, λ
′
m are while positive fixed values. Let us divide inter-

val t ∈ [0, T ] into N equal parts with length ∆τ . So that tn = n · ∆τ, n =
0, 1, . . . , N, ∆τ = T

N , ∆τ > 0, and we digitize only with respect to t using
implicit scheme. In result taking into account λ′m, we obtain the equation (2.1) on
time layer tn+1

∆pn+1(x)− a1 · pn+1(x) = fn(x), (2.5)

where fn(x) = b1 · pn(x) + c1 ·∆pn−1(x) + d1 · pn−1(x), c1 =
λm

2∆τ + λm
,

a1 =
m0βf (∆τ + 2λm) + βc(∆τ + 2λp)

℘
, b1 = −4(m0βfλm + βcλp)

℘
,

d1 =
m0βf (2λm −∆τ) + βc(2λp −∆τ)

℘
, ℘ = ∆τχ(2∆τ + λm) · (βc +mβf ).
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The algorithm “Random walk on spheres“ of Monte Carlo methods. It is clear
that a1 > 0, as parameters m0, βf , ∆τ, λm, βc, λp, χ are positive. Combining
the initial condition with (2.5) we obtain

p0(x) = a(x), x ∈ Ω,
p1(x)− p0(x)

∆τ
= b(x), x ∈ Ω, (2.6)

which are the difference analogues of the initial data (2.2) and (2.3) respectively.
For this problem the boundary condition transformed to:

pn+1(x) = pn+1
1 (x), x ∈ ∂Ω. (2.7)

We shall call the boundary ∂Ω (and ∂Ωε) satisfying the Dirichlet condition as
absorbing boundary. It is known that the problem (2.5) – (2.7) (Dirichlet problem
for the Helmholtz equation of a time layer tn+1), is solved with the help of “random
walk on spheres“ algorithm of Monte Carlo methods. The constructed ε–displaced
estimation of the solution pn+1(x) with the help of “random walk on spheres“
algorithm has a uniformly bounded variance by ε. [2], [3], [4], [5], [6], [7].

The algorithm “Random walk on balls“ of Monte Carlo methods. “Random
walk on balls“ algorithm for solving a Dirichlet problem. This algorithm is similar
to algorithm “random walk on spheres“. In algorithm “random walk on balls“ a
“particle“ passes from the center of the ball to a random point inside the ball and
including a bound of ball (sphere), that is the following state of Markov chain
inside the ball and including a bound of ball. It can be proved that Markov’s chain
converges in the same manner as for “random walk on spheres“ algorithm and for
finite number of steps to the ε-bound of ∂Ωε. But it is obvious that convergence
of Markov chain for “random walk on balls“ algorithm is slower than for “random
walk on spheres“. For that reason, “random walk on balls“ algorithm is almost
unusable for numerical modeling by Monte Carlo methods. The constructed ε-
displaced estimation of the solution pn+1(x) with the help of “random walk on
balls“ algorithm has a uniformly bounded variance by ε. [5].

The algorithm “Random walk on lattices“ of Monte Carlo methods. At first
we approximate the solution (2.5) – (2.7) with the help of finite difference method
and construct Markov chain, its transition probabilities are defined with the help
of coefficients and parameters of the difference problem (2.5) – (2.7). For this
purpose we use the following approximation of the second derivative with respect

to x, i.e. pn+1
xixi(x) =

pn+1(x+ ei h) + pn+1(x− ei h)− 2pn+1(x)

h2
, where h is step

along x, ei is the unit vector along the axis xi. Obviously O(h2) is a precision of
the such approximation. Let’s denote approximation of a domain Ω by ωh, and
boundary ∂Ω – by γh. Now by time lowering superscripts n + 1, n, n − 1 from
(2.5), we obtain the following finite difference equation

p(xi) =
1

2 + a1 h2
· p(xi + ei h) +

1

2 + a1 h2
· p(xi − ei h)− h2

2 + a1 h2
· f(xi). (2.8)
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It’s obvious that

2

2 + a1 h2
−→ 1 for h→ 0, τ →, λm → 0, (2.9)

where h is step along x, τ is time step. That is realization of (2.9) correspond
to convergence requirements of a difference schemes and relaxation process. Let’s

denote α(xi, yi, h,∆τ) =
1

2 + a1 h2
. As α(xi, yi, h,∆τ) > 0 and α + α ≤ 1 on

yi for ∀xi, then α(xi, yi, h,∆τ) are transition probabilities of Markov chain. Here
yi = xi ± ei h, ei is unit vector.

Algorithm. At first we play a coordinate axis with probability 1/3 for Ω ∈
R3. Then the “particle“ moves (along the direction −ei or +ei) with identical
probability α from node xi into one of the neighboring node xi±ei h. It is necessary

to take into account the “weight“ of node, it is proportional to
h2

2 + a1 h2
· f(xi).

And so on until the “particle“ achieves the discrete boundary γh. As soon as the
“particle“ achieves the boundary γh, boundary data p1(xi) is add to a counter.
Thus a random variable ξhNh is defined along a discrete Markov chain with random
length Nh. Then we average it on all trajectories, that is the estimation of the

solution pn+1(xi) in the node xi is defined from pn+1(xi) ≈
1

M

M∑
i=1

(
ξhNh

)
i
, where

M is trajectories amount of Markov chain starting from the node xi. [8], [10], [7],
[9].

Then we have the following

Theorem 1. The Neumann–Ulam scheme is applicable to the finite difference prob-
lem for (2.5) – (2.7).

Proof. Proof of the theorem follows from algorithm of the discrete solution of
promlem (2.5) – (2.7). The complete proof see in [10]. The theorem is proved. �

In this case variance of an estimation of the solution pn+1(xi) will be bounded,
it can be explicitly calculated. [10], [8], [5].

Probability difference method. Let’s consider the finite difference problem
(2.8) for a time layer n+1 with a discrete boundary condition p(xi) = p1(xi) xi ∈
γh. Let’s denote by

{
ζhi , i = 0, 1, . . .

}
value of transition chain. Let p1(x) is the

arbitrary continuous function for x ∈ γh. Let Nh is a moment of the first way
out of a discrete domain ωh: Nh = min

{
i : ζhi /∈ ωh

}
. Combining (2.8) with a

boundary condition we obtain

p(x) = Exp(ζ
h
1 ) +4th α f(x), x ∈ ωh, p(x) = p1(x), x ∈ γh (2.10)

If ExNh <∞, then the problem (2.10) has a unique solution

ph(x) = Ex

{Nh−1∑
i=0

f(ζhi ) · 4thi + p1(ζhNh)
}
. (2.11)
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Here 4thi = 4th(ζhi ) is a process parameter. If f(x) = 0, Px

{
Nh <∞

}
= 1, then

(2.10) has the unique solution

ph(x) = Ex

{
p1(ζhNh) · I{Nh<∞}

}
. (2.12)

[11], [12], [13], [14], [7].

2.2. Solution of the Neumann Problem 2

Let’s consider (2.5) with initial conditions (2.6) and boundary conditions

∂pn+1(x)

∂n
= pn+1

2 (x), x ∈ ∂Ω. (2.13)

The boundary ∂Ω (and ∂Ωε), that correspond to the Neumann condition is called
the reflecting boundary.

The algorithm “Random walk on spheres“ of Monte Carlo methods. Let the
solution of the problem (2.5) – (2.6), (2.13) is defined in a point x0 ∈ Ωε, where
Ωε ⊂ Ω is a domain with the boundary ∂Ωε. ∂Ωε is ε–vicinity of the boundary
Ω. State of Markov chain

{
xi
}

is defined with the help of the “random walk
by spheres“ process, by reaching ∂Ωε–boundary the “particle“ is reflected from
∂Ωε–boundary into previous point (chain returns to the state before reflection).
The “particle“ continues random walk. After reflection the “weight“ of boundary
proportional to pn+1

2 (x) is add to the counter. The chain breaks with the given
probability ζ(ε), it is “small“, ζ(ε) → 0 for ε → 0. Here we shall note, that
the “particle“ moves to the ∂Ωε–boundary along the normal n in “random walk
on spheres“ algorithm. We obtain ε–displaced estimation of a solution pn+1(x) of
the problem (2.8), (2.6), (2.13) in point x by averaging of random variable ηNα
constructed along Markov chain of random length Nα. Probability error follows
from the central limit theorem. It can be estimated as P

{
choice error < ε

} ∼=
erf
( |ε|√M/2

σ2

)
, where P denote probability the error is no more than |ε|, M is

quantity of trajectories, σ2 is sampling of variance. [15], [16], [7], [5], [17], [18].
The algorithm “Random walk on balls“ of Monte Carlo methods. “Random

walk on balls“ algorithm for solving a Neumann problem. This algorithm works
in the same way as “ random walk on balls“ algorithm for Dirichlet problem. In
this case, when “particle“ reaches ε-bound of ∂Ωε, is reflected in previous point
and modeling of Markov chain is continued. The chain breaks with the given
probability ζ(ε), it is “small“, ζ(ε) → 0 for ε → 0. Here we shall note, that
the “particle“ moves to the ∂Ωε-boundary along the normal n in “random walk
on balls“ algorithm. We obtain ε-displaced estimation of a solution pn+1(x) of
the problem (2.8), (2.6), (2.13) in point x by averaging of random variable ηNα
constructed along Markov chain of random length Nα. Probability error follows
from the central limit theorem. It can be estimated as P

{
choice error < ε

} ∼=
erf
( |ε|√M/2

σ2

)
, where P denote probability the error is no more than |ε|, M is

quantity of trajectories, σ2 is sampling of variance. [15], [16], [7], [5], [17], [18].
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The algorithm “Random walk on lattices“ of Monte Carlo methods. Just
as in a case of Dirichlet problem we get finite difference Neumann problem for
three-point difference equation on a time layer n + 1, that is (2.8), (2.6), (2.13).
Here condition (2.9) for α is realized, i.e. α(xi, yi, h, τ) are transition probabilities
of Markov chain.

Algorithm. At first we play coordinate axis with probability 1/3. Then the
“particle“ moves (along the direction −ei or +ei) with equal probability α from
the node xi into one of a neighboring node xi ± ei h. It’s necessary to take into

account the “weight“ of node proportional
h2

2 + a1 h2
· f(xi). And so on until the

“particle“ achieves a discrete boundary γh. By reaching γh–boundary the “par-
ticle“ is reflected into previous point, and boundary data proportional p2(xi) is
add to the counter. Near the boundary ∂Ω a step of grid h∗ along the direction
to boundary γh such that the “particle“ gets on discrete ε–boundary γεh. Ran-
dom walk process continues. The chain breaks with the given probability ζ(ε), it
is “small“ value, ζ(ε) → 0 for ε → 0. Thus, random variable ηhNh is defined
along a discrete Markov chain with random length Nh. Then we average it on all
trajectories, that is the estimation of the solution pn+1(xi) in node xi is defined

from pn+1(xi) ≈
1

M

M∑
i=1

(
ηhNh

)
i
, where M is trajectories amount of Markov chain

starting from the node xi. [8], [10], [12], [13], [7], [11].

Probability difference method. Let’s consider the problem (2.8), (2.6), (2.9).
Let p2(x) is a real bounded continuous function on a set ∂Ω. ∂Ω is reflecting
boundary. Approximation of (2.13) gives(

d(∂Ω) · ∇
)
p(x) = p2(x). (2.14)

Let the set ∂Ωh approximate ∂Ω “from within“. That is either x ∈ Ω
⋂

R3
h or

x ∈ ∂Ω or straight line connecting x with one of the nearest node xi ± eih, xi ±
eih ± ejh or xi ± eih ∓ ejh touches ∂Ω. Then α gives transition probabilities of
the approximating chain ξhi in Ωh. The chain breaks with the given probability

ζ(ε), it is “small“, ζ(ε) → 0 for ε → 0. It should be noted that Ex

{
ξhn+1 −

ξhn| ξhn = yi ∈ ∂Ωh

}
= υ(y)h/|υ(y)|. It is coordinated that reflection from the point

∂Ωh happens along the direction υ(y). υ(y) is direction of hit in interior node.

υ(x) =
3∑
i=1

|υi(x)|. Transition probabilities on ∂ΩR
h : %h(x, x ± ei h) = υ±i /|υ(x)|.

Let’s define Ahn =
n∏
i=0

exp
(
− a(ξhi ) · 4thi · IΩh(ξhi )

)
, where thi is a discrete time,

parameter of ξhi process. For the chain with random length Nh we get unique
discrete approximation of solution of the problem (2.8), (2.6), (2.9)

ph(x) = Ex

{Nh−1∑
i=0

Ahi · f(ξhi ) · 4thi · IΩh(ξhh) +

Nh−1∑
i=0

Ahi · p2(ξhi ) · dφhi
}

(2.15)



Numerical modeling of the linear relaxational filtration 9

[11], [8], [13], [7].

2.3. Solution of the Mixed Problem 3

Let’s consider the problem (2.5), (2.6). To this problem we’ll connect approxima-
tion of the mixed boundary condition (1.17) on a time layer n+ 1

α1 p
n+1(x) + β2 p

n+1(x) = pn+1
3 (x), x ∈ ∂Ωε, (2.16)

where β2 = β1

(
d(∂Ω) · ∇

)
.

The algorithm “Random walk on spheres“ of Monte Carlo methods. As in
a case of the Dirichlet problem we construct Markov chain by “random walk on
spheres“. In general, by reaching ∂Ωε–boundary of a domain Ω the “particle“ is
absorbed or reflected with equal probability 1/2. But in our case, if the “particle“
is absorbed, then in each point the value of “weight“ p3(xi)/α1 is added to Markov
chain, and if the “particle“reflected then we add p3(xi)/β2. The chain breaks if
a “particle“ is absorbed. We get ε–displaced estimation of the solution pε(x) of
the problem (2.8), (2.6), (2.16) in the point x by averaging random variable ξi

constructed along Markov chain with random length N .That is pε(x) =
1

M

M∑
i=1

ξi.

[19], [20], [13], [7], [12].
The algorithm “Random walk on balls“ of Monte Carlo methods. “Random

walk on balls“ for solving a mixed problem. As in a case of the Dirichlet problem
we construct Markov chain by “random walk on balls“. In general, by reaching
∂Ωε-boundary of a domain Ω the “particle“ is absorbed or reflected with equal
probability 1/2. But in our case, if the “particle“ is absorbed, then in each point the
value of “weight“ p3(xi)/α1 is added to Markov chain, and if the “particle“reflected
then we add p3(xi)/β2. The chain breaks if a “particle“ is absorbed. We get ε-
displaced estimation of the solution pε(x) of the problem (2.8), (2.6), (2.16) in
the point x by averaging random variable ξi constructed along Markov chain with

random length N . That is pε(x) =
1

M

M∑
i=1

ξi. [19], [20], [13], [7], [12].

The algorithm “Random walk on lattices“ of Monte Carlo methods. Let’s
consider the following finite difference problem (2.8), (2.6)

α1 p(xi) + β2 p(xi) = p3(xi), xi ∈ γh. (2.17)

The problem (2.8), (2.6), (2.17) is considered on a time layer n+ 1.
Algorithm. At first we play coordinate axis with probability 1/3 for Ω ∈ R3.

Then the “particle“ moves (along the direction −ei or +ei) with equal probability
α from the node xi into one of a neighboring node xi± ei h. It is necessary to take

into account the “weight“ of node, it proportional
h2

2 + a1 h2
·f(xi). And so on until

the “particle“ achieves the discrete boundary γh. In general, on a boundary γh the
“particle“ is absorbed or reflected with equal probability 1/2. But in our case, the
chain breaks if the “particle“ is absorbed, and we add to counter a “weight“ of
absorbing boundary node p3(xi)/α1, at reflection – p3(xi)/β2. Thus, we define a
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random variable ξhNh along a discrete Markov chain with random length Nh. The

estimation of solution ph(xi) in a node xi is defined by ph(xi) ≈
1

M

M∑
i=1

(
ξhNh

)
i
,

where M is trajectories amount of Markov chain starting from the node xi. [8],
[13], [12], [10], [7], [19], [14].

Probability difference method. The problem (2.8), (2.6), (2.17) is considered
on a time layer n+ 1. Let p3(x) is the real bounded continuous function on a set
∂Ω. Let the set ∂ΩR

h approximate ∂Ω “from within“. That is either x ∈ Ω
⋂
R3
h or

x ∈ ∂Ω or straight line connecting x with one of the nearest node xi ± eih, xi ±
eih±ejh or xi±eih∓ejh touches ∂Ω. The set is determined in Ω

⋂
R3
h. Let’s define

digitization Ωh = Ω
⋂
R3
h − ∂ΩR

h of interior Ω and digitization of a stopping set
∂ΩAh = R3

h−Ωh−∂ΩR
h . Then α gives transitive probabilities of the approximating

chain ξhi in Ωh. The chain breaks at the first contact with ∂ΩAh . Let’s notice

that Ex

{
ξhn+1 − ξhn| ξhn = yi ∈ ∂ΩR

h

}
= υ(y)h/|υ(y)|. It is coordinated that the

reflection from the point ∂ΩR
h happens along direction υ(y). υ(y) is the direction

of hit into interior node. Let’s define Ahn =
n∏
i=0

exp
(
− a(ξhi ) · 4thi · IΩh(ξhi )

)
,

Chn =
n∏
i=0

exp
(
− β1(ξhi ) dφhi

)
, Dh

n = Ahn C
h
n . We consider the case α1 = α1(x),

β1 = β1(x), thi is a discrete time, parameter of the process ξhi , dφh = h /|υ(x)|,
dφhi = dφh(ξhi ) I∂ΩRh

(ξhi ). For the chain with random length Nh = min
{
n : ξhn ∈

∂ΩAh
}

we obtain unique discrete approximation of a solution of the problem (2.8),
(2.6), (2.17)

ph(x) = Ex

{Nh−1∑
i=0

Dh
i ·f(ξhi )·4thi ·IΩh(ξhi )+Dh

Nh−1 α1(ξhNh)+

Nh−1∑
i=0

Dh
i ·p3(ξhi )·dφhi

}
.

(2.18)
[11], [8], [13], [12], [10], [7], [19], [14].

3. Solution of the initial boundary value problem for the model (I)
– classical elastic filtration model by Monte Carlo methods

3.1. Mathematical setting of Dirichlet problem

for this model has the following form:

χ∆p(x, t) =
∂p(x, t)

∂t
, (3.1)

p(x, t) = a(x),while t = 0, (3.2)

p(x, t) = p1(x, t) for x ∈ ∂Ω× [0, T ]. (3.3)

After approximation only by time variable equation (3.1) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (3.4)
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where a1 =
1

∆τχ
, fn(x) = − 1

∆τχ
pn(x). Initial and boundary conditions (3.2)

and (3.3):
p0(x) = a(x), x ∈ Ω, (3.5)

pn+1(x) = pn+1
1 (x), x ∈ ∂Ω. (3.6)

Problem (3.4) – (3.6) for a fixed time layer n = 0, 1, . . . , N − 1 can be considered
as a Dirichlet problem for Helmholtz equation.

3.2. Mathematical setting of Neumann problem

for classical elastic filtration model:

χ∆p(x, t) =
∂p(x, t)

∂t
, (3.7)

p(x, t) = a(x),while t = 0, (3.8)

∂p(x, t)

∂n
= p2(x, t) for x ∈ ∂Ω× [0, T ], (3.9)

where n is an internal normal. After approximation only by time variable t equation
(3.7) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (3.10)

where a1 =
1

∆τχ
, fn(x) = − 1

∆τχ
pn(x). Initial condition (3.8) has the same form

as for approximated Dirichlet problem:

p0(x) = a(x), x ∈ Ω, (3.11)

and boundary Neumann condition (3.9):

∂pn+1(x)

∂n
= pn+1

2 (x) x ∈ ∂Ω. (3.12)

Problem (3.10) – (3.12) for a fixed time layer n = 0, 1, . . . , N−1 can be considered
as a Neumann problem for Helmholtz equation.

3.3. Mathematical setting of mixed problem

for classical elastic filtration model:

χ∆p(x, t) =
∂p(x, t)

∂t
, (3.13)

p(x, t) = a(x),while t = 0, (3.14)

α1p(x, t) + β1
∂p(x, t)

∂n
= p3(x, t) for x ∈ ∂Ω× [0, T ], (3.15)

where n is an internal normal. After approximation only by time variable t equation
(3.13) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (3.16)

where a1 =
1

∆τχ
, fn(x) = − 1

∆τχ
pn(x). Initial condition (3.14) has the same form

as for approximated Dirichlet problem:

p0(x) = a(x), x ∈ Ω, (3.17)
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and mixed boundary condition (3.15):

α1 p
n+1(x) + β2 p

n+1(x) = pn+1
3 (x), x ∈ ∂Ωε, (3.18)

where β2 = β1

(
d(∂Ω) · ∇

)
. Problem (3.16) – (3.18) for a fixed time layer n =

0, 1, . . . , N − 1 can be considered as a mixed problem for Helmholtz equation.

Problems described in 3.1, 3.2 and 3.3, that is Dirichlet, Neumann and mixed
problems (3.4) – (3.6), (3.10) – (3.12) and (3.16) – (3.18) are solved by Monte
Carlo methods algorithms in the same way as problems from 2, as for model III –
Filtration in relaxationaly-compressed porous environment realized by the linear
Darcy law.

4. Solution of the initial boundary value problem for the model
(II) – the simplest model of filtration with a constant speed of
disturbance spread by Monte Carlo methods

4.1. Mathematical setting of Dirichlet problem

for this model has the following form:

χ∆p(x, t) =
∂p(x, t)

∂t
+ τ

∂2p(x, t)

∂t2
, (4.1)

p(x, t) = a(x),while t = 0, (4.2)

∂p(x, t)

∂t
= b(x),while t = 0, (4.3)

p(x, t) = p1(x, t) for x ∈ ∂Ω× [0, T ]. (4.4)

After approximation only by time variable t equation (4.1) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (4.5)

where a1 =
∆τ + τ

∆τ2χ
, fn(x) = −∆τ + 2τ

∆τ2χ
pn(x)+

τ

∆τ2χ
pn−1(x). Initial and bound-

ary conditions (4.2), (4.3) and (4.4):

p0(x) = a(x), x ∈ Ω, (4.6)

p1(x)− p0(x)

∆τ
= b(x), x ∈ Ω, (4.7)

pn+1(x) = pn+1
1 (x), x ∈ ∂Ω. (4.8)

Problem (4.5) – (4.8) for a fixed time layer n = 0, 1, . . . , N − 1 can be considered
as a Dirichlet problem for Helmholtz equation.
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4.2. Mathematical setting of Neumann problem

for this model has the following form:

χ∆p(x, t) =
∂p(x, t)

∂t
+ τ

∂2p(x, t)

∂t2
, (4.9)

p(x, t) = a(x),while t = 0, (4.10)

∂p(x, t)

∂t
= b(x),while t = 0, (4.11)

∂p(x, t)

∂n
= p2(x, t) for x ∈ ∂Ω× [0, T ], (4.12)

where n is an internal normal. After approximation only by time variable t equation
(4.9) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (4.13)

where a1 =
∆τ + τ

∆τ2χ
, fn(x) = −∆τ + 2τ

∆τ2χ
pn(x)+

τ

∆τ2χ
pn−1(x). Initial and bound-

ary conditions (4.10), (4.11) and (4.12):

p0(x) = a(x), x ∈ Ω, (4.14)

p1(x)− p0(x)

∆τ
= b(x), x ∈ Ω, (4.15)

∂pn+1(x)

∂n
= pn+1

2 (x), x ∈ ∂Ω. (4.16)

Problem (4.13) – (4.16) for a fixed time layer n = 0, 1, . . . , N−1 can be considered
as a Neumann problem for Helmholtz equation.

4.3. Mathematical setting of mixed problem

for this model has the following form:

χ∆p(x, t) =
∂p(x, t)

∂t
+ τ

∂2p(x, t)

∂t2
, (4.17)

p(x, t) = a(x),while t = 0, (4.18)

∂p(x, t)

∂t
= b(x),while t = 0, (4.19)

α1p(x, t) + β1
∂p(x, t)

∂n
= p3(x, t) for x ∈ ∂Ω× [0, T ], (4.20)

where n is an internal normal. After approximation only by time variable t equation
(4.17) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (4.21)

where a1 =
∆τ + τ

∆τ2χ
, fn(x) = −∆τ + 2τ

∆τ2χ
pn(x)+

τ

∆τ2χ
pn−1(x). Initial and bound-

ary conditions (4.18), (4.19) and (4.20):

p0(x) = a(x), x ∈ Ω, (4.22)

p1(x)− p0(x)

∆τ
= b(x), x ∈ Ω, (4.23)
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α1 p
n+1(x) + β2 p

n+1(x) = pn+1
3 (x), x ∈ ∂Ωε, (4.24)

where β2 = β1

(
d(∂Ω) · ∇

)
. Problem (4.21) – (4.24) for a fixed time layer n =

0, 1, . . . , N − 1 can be considered as a mixed problem for Helmholtz equation.

Problems described in 4.1, 4.2 and 4.3, that is Dirichlet, Neumann and mixed
problems (4.5) – (4.8), (4.13) – (4.16) and (4.21) – (4.24) are solved by Monte
Carlo methods algorithms in the same way as problems from 2, as for model III –
Filtration in relaxationaly-compressed porous environment realized by the linear
Darcy law.

5. Solution of the initial boundary value problem for the model
(IV) – Model of filtration by the simplest unbalanced law in
elastic porous environment by Monte Carlo methods

5.1. Mathematical setting of Dirichlet problem

for this model has the following form:

χ∆

(
p(x, t) + τp

∂p(x, t)

∂t

)
=

∂

∂t

(
p(x, t) + τW

∂p(x, t)

∂t

)
, (5.1)

p(x, t) = a(x),while t = 0, (5.2)

∂p(x, t)

∂t
= b(x),while t = 0, (5.3)

p(x, t) = p1(x, t) for x ∈ ∂Ω× [0, T ]. (5.4)

After approximation only by time variable t equation (5.1) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (5.5)

where a1 =
∆τ + τW

∆τχ(∆τ + τp)
, fn(x) =

τp
∆τ + τp

∆pn(x) − ∆τ + 2τW
∆τχ(∆τ + τp)

pn(x) +

τW
∆τχ(∆τ + τp)

pn−1(x). Initial and boundary conditions (5.2), (5.3) and (5.4):

p0(x) = a(x), x ∈ Ω, (5.6)

p1(x)− p0(x)

∆τ
= b(x), x ∈ Ω, (5.7)

pn+1(x) = pn+1
1 (x), x ∈ ∂Ω. (5.8)

Problem (5.5) – (5.8) for a fixed time layer n = 0, 1, . . . , N − 1 can be considered
as a Dirichlet problem for Helmholtz equation.
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5.2. Mathematical setting of Neumann problem

for this model has the following form:

χ∆

(
p(x, t) + τp

∂p(x, t)

∂t

)
=

∂

∂t

(
p(x, t) + τW

∂p(x, t)

∂t

)
, (5.9)

p(x, t) = a(x),while t = 0, (5.10)

∂p(x, t)

∂t
= b(x),while t = 0, (5.11)

∂p(x, t)

∂n
= p2(x, t) for x ∈ ∂Ω× [0, T ], (5.12)

where n is an internal normal. After approximation only by time variable t equation
(4.9) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (5.13)

where a1 =
∆τ + τW

∆τχ(∆τ + τp)
, fn(x) =

τp
∆τ + τp

∆pn(x) − ∆τ + 2τW
∆τχ(∆τ + τp)

pn(x) +

τW
∆τχ(∆τ + τp)

pn−1(x). Initial and boundary conditions (5.10), (5.11) and (5.12):

p0(x) = a(x), x ∈ Ω, (5.14)

p1(x)− p0(x)

∆τ
= b(x), x ∈ Ω, (5.15)

∂pn+1(x)

∂n
= pn+1

2 (x), x ∈ ∂Ω. (5.16)

Problem (5.13) – (5.16) for a fixed time layer n = 0, 1, . . . , N−1 can be considered
as a Neumann problem for Helmholtz equation.

5.3. Mathematical setting of mixed problem

for this model has the following form:

χ∆

(
p(x, t) + τp

∂p(x, t)

∂t

)
=

∂

∂t

(
p(x, t) + τW

∂p(x, t)

∂t

)
, (5.17)

p(x, t) = a(x),while t = 0, (5.18)

∂p(x, t)

∂t
= b(x),while t = 0. (5.19)

α1p(x, t) + β1
∂p(x, t)

∂n
= p3(x, t) for x ∈ ∂Ω× [0, T ], (5.20)

where n is an internal normal. After approximation only by time variable t equation
(5.17) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (5.21)

where a1 =
∆τ + τW

∆τχ(∆τ + τp)
, fn(x) =

τp
∆τ + τp

∆pn(x) − ∆τ + 2τW
∆τχ(∆τ + τp)

pn(x) +

τW
∆τχ(∆τ + τp)

pn−1(x). Initial and boundary conditions (5.18), (5.19) and (5.20):

p0(x) = a(x), x ∈ Ω, (5.22)
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p1(x)− p0(x)

∆τ
= b(x), x ∈ Ω, (5.23)

α1 p
n+1(x) + β2 p

n+1(x) = pn+1
3 (x), x ∈ ∂Ωε, (5.24)

where β2 = β1

(
d(∂Ω) · ∇

)
. Problem (5.21) – (5.24) for a fixed time layer n =

0, 1, . . . , N − 1 can be considered as a mixed problem for Helmholtz equation.

Problems described in 5.1, 5.2 and 5.3, that is Dirichlet, Neumann and mixed
problems (5.5) – (5.8), (5.13) – (5.16) and (5.21) – (5.24) are solved by Monte
Carlo methods algorithms in the same way as problems from 2, as for model III –
Filtration in relaxationaly-compressed porous environment realized by the linear
Darcy law.

6. Solution of the initial boundary value problem for the model
(III) – Filtration model in relaxationaly-compressed porous
environment realized by the linear Darcy law, part 2 (βf = 0
and λp = 0), by Monte Carlo methods

6.1. Mathematical setting of Dirichlet problem

for this model has the following form:

χ∆

(
p(x, t) + λm

∂p(x, t)

∂t

)
=
∂p(x, t)

∂t
, (6.1)

p(x, t) = a(x),while t = 0, (6.2)

p(x, t) = p1(x, t) for x ∈ ∂Ω× [0, T ]. (6.3)

After approximation only by time variable t equation (6.1) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (6.4)

where a1 =
1

χ(∆τ + λm)
, fn(x) =

λm
∆τ + λm

∆pn(x) − 1

χ(∆τ + λm)
pn(x). Initial

and boundary conditions (6.2)and (6.3):

p0(x) = a(x), x ∈ Ω, (6.5)

pn+1(x) = pn+1
1 (x), x ∈ ∂Ω. (6.6)

Problem (6.4) – (6.6) for a fixed time layer n = 0, 1, . . . , N − 1 can be considered
as a Dirichlet problem for Helmholtz equation.
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6.2. Mathematical setting of Neumann problem

for this model has the following form:

χ∆

(
p(x, t) + λm

∂p(x, t)

∂t

)
=
∂p(x, t)

∂t
, (6.7)

p(x, t) = a(x),while t = 0, (6.8)

∂p(x, t)

∂n
= p2(x, t) for x ∈ ∂Ω× [0, T ], (6.9)

where n is an internal normal. After approximation only by time variable t equation
(6.7) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (6.10)

where a1 =
1

χ(∆τ + λm)
, fn(x) =

λm
∆τ + λm

∆pn(x) − 1

χ(∆τ + λm)
pn(x). Initial

and boundary conditions (6.8) and (6.9):

p0(x) = a(x), x ∈ Ω, (6.11)

∂pn+1(x)

∂n
= pn+1

2 (x), x ∈ ∂Ω. (6.12)

Problem (6.10) – (6.12) for a fixed time layer n = 0, 1, . . . , N−1 can be considered
as a Neumann problem for Helmholtz equation.

6.3. Mathematical setting of mixed problem

for this model has the following form:

χ∆

(
p(x, t) + λm

∂p(x, t)

∂t

)
=
∂p(x, t)

∂t
, (6.13)

p(x, t) = a(x),while t = 0, (6.14)

α1p(x, t) + β1
∂p(x, t)

∂n
= p3(x, t) for x ∈ ∂Ω× [0, T ], (6.15)

where n is an internal normal. After approximation only by time variable t equation
(6.13) has the form:

∆pn+1(x)− a1p
n+1(x) = fn(x), (6.16)

where a1 =
1

χ(∆τ + λm)
, fn(x) =

λm
∆τ + λm

∆pn(x) − 1

χ(∆τ + λm)
pn(x). Initial

and boundary conditions (6.14) and (6.15):

p0(x) = a(x), x ∈ Ω, (6.17)

α1 p
n+1(x) + β2 p

n+1(x) = pn+1
3 (x), x ∈ ∂Ωε, (6.18)

where β2 = β1

(
d(∂Ω) · ∇

)
. Problem (6.16) – (6.18) for a fixed time layer n =

0, 1, . . . , N − 1 can be considered as a mixed problem for Helmholtz equation.
Problems described in 6.1, 6.2 and 6.3, that is Dirichlet, Neumann and mixed

problems ((6.4) – (6.6), (6.10) – (6.12) and (6.16) – (6.18) are solved by Monte
Carlo methods algorithms in the same way as problems from 2, as for model III –
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Filtration in relaxationaly-compressed porous environment realized by the linear
Darcy law.

Remark 2. In all considered models after evaluating pressure p(x, t) by Monte
Carlo methods, the first derivatives of p(x, t) (gradx p(x, t)) are also evaluated by
Monte Carlo methods. [4], [6], [8], [17]. Then we can evaluate a rate of filtration
W(x, t) in all models by Monte Carlo methods. For example, for model II: vector
equation

τ
∂W(x, t)

∂t
+ W(x, t) = −κ

µ
gradx p(x, t)

can be approximated only by t. Then we get:

τ
Wn+1(x)−Wn(x)

∆τ
+ Wn(x) = fn1 (x)

or

Wn+1(x) =
(

1− ∆τ

τ

)
Wn(x) +

∆τ

τ
fn1 (x), n = 0, 1, . . . , N − 1,

where W0(x) is known because of initial condition W(x, t) = W̃(x) for t = 0,

and function fn1 (x) = −κ
µ

gradx p
n(x) is also evaluated by Monte Carlo methods

function in point x.

Remark 3. If trajectories of the Markov’s chains is infinitely long and their amount
(of trajectories) is also infinite, then all estimates of solutions in this work con-
vergence to exact solution of the original problem. This obvious fact (at least for
those who involved in Monte Carlo methods for partial differential equations) is
not written in this article.
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